Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.541
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732059

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Anthocyanins , Ethylenes , Fruit , Gene Expression Regulation, Plant , Mangifera , Plant Proteins , Transcription Factors , Mangifera/metabolism , Mangifera/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Anthocyanins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Pigmentation/genetics , Chlorophyll/metabolism
2.
Environ Monit Assess ; 196(5): 468, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656463

In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.


Air Pollutants , Environmental Monitoring , Metals, Heavy , Particulate Matter , Plant Leaves , Plant Leaves/chemistry , Air Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Particulate Matter/analysis , Mangifera/chemistry , Bangladesh , Psidium/chemistry
3.
Int J Biol Macromol ; 267(Pt 1): 131185, 2024 May.
Article En | MEDLINE | ID: mdl-38565360

Sustainable poly(butylene succinate) (PBS) films incorporating lignin nanoparticles (LN) and trans-cinnamaldehyde (CN) have been developed to preserve mango freshness and provide food safety. PBS/LN, PBS/CN, and PBS/LN/CN composite films were produced by blown film melt extrusion. This study investigated the effect of CN-LN on the CN remaining content, thermal, mechanical, and barrier properties, diffusion coefficient, and antifungal activity of PBS films both in vitro and in vivo. Results showed that LN in the PBS/LN/CN composite film contained more CN than in the PBS/CN film. The compatibility of CN-LN with PBS produced homogeneous surfaces with enhanced barrier properties. PBS/LN/CN composite films demonstrated superior antifungal efficacy, inhibiting the growth of Colletotrichum gloeosporioides and preserving mango quality during storage. Results suggested that incorporating LN into PBS composite films prolonged the sustained release of antifungal agents, thereby inhibiting microbial growth and extending the shelf life of mangoes. Development of PBS/LN/CN composite films is a beneficial step toward reducing food waste and enhancing food safety.


Acrolein , Acrolein/analogs & derivatives , Antifungal Agents , Butylene Glycols , Colletotrichum , Food Packaging , Lignin , Mangifera , Nanoparticles , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Acrolein/chemistry , Acrolein/pharmacology , Mangifera/chemistry , Lignin/chemistry , Lignin/pharmacology , Food Packaging/methods , Colletotrichum/drug effects , Nanoparticles/chemistry , Polymers/chemistry
4.
J Pharm Pharm Sci ; 27: 12674, 2024.
Article En | MEDLINE | ID: mdl-38606395

Introduction: The extract from the Mango Seed Kernel (MSK) has been documented to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa. This suggests that biomaterials containing MSK extract could be a viable alternative to conventional wound treatments, such as nanocrystalline silver dressings. Despite this potential, there is a notable gap in the literature regarding comparing the antibacterial effectiveness of MSK film dressings with nanocrystalline silver dressings. This study aimed to develop film dressings containing MSK extract and evaluate their antibacterial properties compared to nanocrystalline silver dressings. Additionally, the study aimed to assess other vital physical properties of these dressings critical for effective wound care. Materials and methods: We prepared MSK film dressings from two cultivars of mango from Thailand, 'Chokanan' and 'Namdokmai'. The inhibition-zone method was employed to determine the antibacterial property. The morphology and chemical characterization of the prepared MSK film dressings were examined with scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR), respectively. The absorption of pseudo-wound exudate and water vapor transmission rate (WVTR) of film dressings were evaluated. Results: The results showed that 40% of MSKC film dressing had the highest inhibition zone (20.00 ± 0.00 mm against S. aureus and 17.00 ± 1.00 mm against P. aeruginosa) and 20%, 30%, and 40% of MSKC and MSKN film dressings had inhibition zones similar to nanocrystalline silver dressing for both S. aureus and P. aeruginosa (p > 0.05). In addition, all concentrations of the MSK film dressings had low absorption capacity, and Chokanan MSK (MSKC) film dressings had a higher WVTR than Namdokmai MSK (MSKN) film dressings. Conclusion: 20%, 30%, and 40% of MSK film dressing is nearly as effective as nanocrystalline silver dressing. Therefore, it has the potential to be an alternative antibacterial dressing and is suitable for wounds with low exudate levels.


Burns , Mangifera , Anti-Bacterial Agents/therapeutic use , Silver/pharmacology , Silver/chemistry , Thailand , Staphylococcus aureus , Gram-Negative Bacteria , Gram-Positive Bacteria , Bandages
5.
Molecules ; 29(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38611723

This study, for the first time, has investigated the relationships between alterations of mangiferin contents in mango leaves at different maturity stages and their antibacterial properties. Leaves were classified into six different maturity stages based on their color: (1) young dark reddish brown, (2) young yellow, (3) young light green, (4) mature green, (5) old dark green, and (6) old yellow leaves. Ethanol extracts were then examined against Gram-positive and Gram-negative bacteria, applying broth dilution and agar well diffusion methods. In addition, we also measured the mangiferin contents in leaves at different stages for the purpose of evaluating how the changes in this phytochemistry value affects their activities against bacteria. The results showed that extracts from leaves at young ages had better antibacterial properties than those from old leaves, as evidenced by the lower minimum inhibitory concentrations and larger inhibitory zones. In addition, we also found that the contents of mangiferin were significantly decreased followed the maturation process. These results suggest that mango leaves at young stages, especially dark reddish brown and young yellow leaves, are preferable for application in bacterial infections and other therapies related to mangiferin's constituents.


Mangifera , Animals , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Vietnam , Birds
6.
BMC Plant Biol ; 24(1): 266, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600447

BACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold. RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses. CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.


Cyclopentanes , Mangifera , Oxylipins , Transcriptome , Cold-Shock Response/genetics , Mangifera/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Hydrogen Peroxide/metabolism , China , Gene Expression Profiling , Gene Expression Regulation, Plant
7.
PLoS One ; 19(4): e0299572, 2024.
Article En | MEDLINE | ID: mdl-38568889

The unprecedented impact of the pandemic on both activities and profit of actors draws out the various areas of the value chain that need to be strengthened to ensure resilience in the face of global shock. This study fills the gap by assessing the extent at which COVID-19 impacted the profit of mango value chain actors in southern Ghana. It also analyzed the governance structure and the existing linkages in the dissemination of market information in relation to the profit of the actors. A two-year panel survey on 240 respondents was conducted in 2020 through a multi-stage sampling technique in Greater Accra, Eastern and Volta regions of Ghana. Net Farm Income, Social Network Analysis and Difference-in-Difference models were used in analyzing the data. Findings revealed that mango processors have more bargaining power and make the most profit while producers receive more information than other actors. Farmer-based organizations were found to be the prominent node and influential in the dissemination of market information within the value chain. The outbreak of COVID-19 negatively impacted the profit of mango producers and distributors; however, processors had a positive impact on their profit. The study therefore demonstrated that producers and distributors were vulnerable to the effect of the COVID-19 shock, whilst processors were robust to the shocks. Thus, reformed policies by all stakeholders for emergency preparedness should be targeted especially at those vulnerable actors in the chain. Additionally, FBOs, retailers and other key stakeholders should be considered in policy development to enhance market information dissemination.


COVID-19 , Mangifera , Humans , COVID-19/epidemiology , Organizations , Farmers , Farms
8.
Funct Plant Biol ; 512024 Apr.
Article En | MEDLINE | ID: mdl-38588720

Reproductive development of fruiting trees, including mango (Mangifera indica L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant's carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.


Fruit , Mangifera , Animals , Starch/metabolism , Birds , Trees , Carbon/metabolism , Sugars/metabolism
9.
Mol Biol Rep ; 51(1): 557, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643317

BACKGROUND: Post-harvest anthracnose (PHA) of mango is a devastating disease, which results in huge loss to mango producers and importers. Various species of PHA, diverse pathogenicity, and different resistance towards fungicides make it essential to evaluate the pathogen taxonomic status and biological characterization. METHODS AND RESULTS: Two strains DM-1 and DM-2 isolated from the fruit of DaQing mango from Vietnam were identified as Colletotrichum fructicola and C. asianum respectively, based on the morphological features, along with the phylogenetic tree of ITS and ApMat combined sequences. The growth status of different Colletotrichum strains under different conditions was analyzed to reveal the biological characteristics. The optimum growth temperature of DM-1 and DM-2 was 28 °C and mycelia grew rapidly in the dark. Both strains could grow in media with pH 4-11, while the optimum pH value was 6. Maltose and soluble starch were the most suitable carbon source for DM-1 and DM-2 respectively, and the peptone was the most suitable nitrogen source for both strains. The lethal temperatures were recorded as 55 °C 5 min for DM-1, and 50 °C 10 min for DM-2. CONCLUSIONS: To the best of our knowledge, it is the first study reporting the identification of the pathogens: C. fructicola and C. asianum responsible for postharvest fruit anthracnose of mango in Vietnam.


Colletotrichum , Mangifera , Mangifera/microbiology , Phylogeny , Vietnam , Plant Diseases/microbiology
10.
Food Funct ; 15(9): 5118-5131, 2024 May 07.
Article En | MEDLINE | ID: mdl-38682277

This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.


Interleukin-8 , Intestinal Mucosa , Mangifera , Mucin-2 , Humans , Mangifera/chemistry , Caco-2 Cells , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Interleukin-8/metabolism , Mucin-2/metabolism , HT29 Cells , Polyphenols/pharmacology , Colon/drug effects , Colon/metabolism , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Inflammation/drug therapy , Intestinal Barrier Function
11.
J Autoimmun ; 144: 103181, 2024 04.
Article En | MEDLINE | ID: mdl-38522129

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Colitis , Inflammatory Bowel Diseases , Mangifera , Adult , Humans , Animals , Tumor Necrosis Factor-alpha/metabolism , Endothelial Cells/metabolism , Intestinal Mucosa , Disease Models, Animal
12.
BMC Plant Biol ; 24(1): 208, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38519933

BACKGROUND: Mango (Mangifera indica L.) faces escalating challenges from increasing drought stress due to erratic climate patterns, threatening yields, and quality. Understanding mango's drought response mechanisms is pivotal for resilience and food security. RESULTS: Our RNA-seq analyses unveil 12,752 differentially expressed genes linked to stress signaling, hormone regulation, and osmotic adjustment. Weighted Gene Co-expression Network Analysis identified three essential genes-WRKY transcription factor 3, polyamine oxidase 4, and protein MEI2-like 1-as drought defense components. WRKY3 having a role in stress signaling and defense validates its importance. Polyamine oxidase 4, vital in stress adaptation, enhances drought defense. Protein MEI2-like 1's significance emerges, hinting at novel roles in stress responses. Metabolite profiling illuminated Mango's metabolic responses to drought stress by presenting 990 differentially abundant metabolites, mainly related to amino acids, phenolic acids, and flavonoids, contributing to a deeper understanding of adaptation strategies. The integration between genes and metabolites provided valuable insights by revealing the correlation of WRKY3, polyamine oxidase 4 and MEI2-like 1 with amino acids, D-sphingnosine and 2,5-Dimethyl pyrazine. CONCLUSIONS: This study provides insights into mango's adaptive tactics, guiding future research for fortified crop resilience and sustainable agriculture. Harnessing key genes and metabolites holds promise for innovative strategies enhancing drought tolerance in mango cultivation, contributing to global food security efforts.


Mangifera , Resilience, Psychological , Droughts , Mangifera/genetics , Gene Expression Profiling , Amino Acids , Stress, Physiological/genetics , Gene Expression Regulation, Plant
13.
J Insect Sci ; 24(2)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38491950

The Sudano-Sahelian and the high Guinea savannahs agroecological zones of Cameroon are suitable for the full development of tree crops, including mango. Unfortunately, fresh fruits exported to local and international markets are frequently rejected due to the presence of fruit fly larvae (Diptera: Tephritidae), resulting in drastic income losses and overuse of chemical control products. To promote sustainable management strategies, a 2-yr study (2020-2021) was conducted in 4 and 3 mixed orchards, respectively. Attacked mangoes showing signs of fruit fly damage were collected and taken to the laboratory to rear and identify fruit flies. Repeated grafting and agroclimatic differences were responsible for dissimilarities between the 2 zones, with 18 and 16 cultivars, respectively. From 2,857 attacked mangoes, 26,707 fruit flies belonging to 4 species were identified: Bactrocera dorsalis, Ceratitis cosyra, Ceratitis fasciventris, and Ceratitis anonae. Climate change was the factor determining the distribution of the 2 most important mango fruit flies: B. dorsalis was a wetland species (dominance/occurrence > 70%), while C. cosyra was a dry-land species (dominance/occurrence > 75%). Both species were responsible for high levels of infestations. Bactrocera dorsalis preferred 3 mango cultivars, namely Palmer and Smith in Zone 1, and Ifack 1 in Zone 2 (infestation > 20 individuals/100 g of mango). The host-plant spectrum of C. cosyra was modified by alternative host plants. Both C. fasciventris and C. anonae were rare. Findings from this study could guide researchers in the development of monitoring tools for fruit fly populations and, subsequently, in reducing the damage they cause to mangoes.


Anacardiaceae , Mangifera , Tephritidae , Humans , Animals , Cameroon , Drosophila , Larva
14.
Int J Food Microbiol ; 415: 110632, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38428167

The objectives of this research were to study the effect of UV irradiation on quality characteristics of mango juice during cold storage. Mango juice exposed to UV radiation was also used to determine zero-order and first-order kinetic models of microbial (total plate count, yeast and mold count, and Escherichia coli) reduction. According to the microbiological results, UV light at 120 J/cm2 caused a 5.19 log reduction. It was found that microbial inactivation of all tested microorganisms followed first-order kinetic model. The treatments did not differ significantly in terms of the quality metrics. L*, b*, pH, total soluble solid, total phenolic compound, total flavonoid content, and antioxidant activity as measured by the DPPH and FRAP assay all tended to decline during storage at 4 °C, whereas a*, ∆E, titratable acidity, total plate count, yeast and mold count, as well as the total plate count, had an increasing trend. During storage at 4 °C, UV irradiation increased the shelf life of mango juice by about 14 days compared to the control sample. In conclusion, this study demonstrated the potential of UV treatment as an alternative to thermal pasteurization for preserving mango juice quality and safety while also prolonging shelf life.


Mangifera , Pasteurization , Pasteurization/methods , Ultraviolet Rays , Saccharomyces cerevisiae/radiation effects , Antioxidants/analysis
15.
Int J Biol Macromol ; 265(Pt 2): 131033, 2024 Apr.
Article En | MEDLINE | ID: mdl-38518939

This study aimed to extract and modify the properties of the starch from Thai mango seeds (cultivar Chok-Anan). The porous starch samples were obtained using enzymatic treatment and its potential to retain aroma compounds from coffee extract was evaluated. The physicochemical properties, structure characteristics, porosity characteristics and adsorption quantity of starches were also determined. The retention of coffee aroma compounds was investigated through combining starch or porous starch with odorants, and storing the mixtures at room temperature for 7 and 14 days, respectively. The chemical properties of aroma compounds as well as starch surface properties were observed to affect the retention of aroma compounds upon storage. Additionally, 2-furanmethanol, d-limonene and maltol were selected to be the primary target compounds to assess the retention of odorants. This study observed a noticeable decrease in d-limonene content throughout the storage period. On the contrary, after 14 days of storage, the porous starch exhibited high retention of hydroxy compounds including 2-furanmethanol and maltol. However, after prolonged storage their ability to retain 2-furanmethanol and maltol slightly decreased. Therefore, the porous starch derived from mango seeds exhibited the potential to retain coffee aroma compounds and could be a desirable green adsorbent for food and cosmetic industries.


Mangifera , Starch , Starch/chemistry , Porosity , Mangifera/chemistry , Odorants , Limonene , Thailand , Seeds , Organic Chemicals
16.
Gene ; 912: 148382, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38493974

An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.


Mangifera , Xanthomonas campestris , Mangifera/genetics , Mangifera/metabolism , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Multigene Family , Hormones , Plant Proteins/metabolism , Gene Expression Regulation, Plant
17.
Waste Manag ; 180: 55-66, 2024 May 15.
Article En | MEDLINE | ID: mdl-38520898

Due to the rapid growth of the aquaculture industry, large amounts of organic waste are released into nature and polluted the environment. Traditional organic waste treatment such as composting is a time-consuming process that retains the ammonia (NH3) in the compost, and the compost produced has little economic value as organic fertilizer. Illegal direct discharge into the environment is therefore widespread. This study investigates the recovery of NH3 through thermophilic composting of shrimp aquaculture sludge (SAS) and its application as a soil conditioner for the growth of mango plants. A maximum composting temperature of 57.10 °C was achieved through self-heating in a 200 L bench-scale reactor, resulting in NH3 recovery of 224.04 mol/ton-ds after 14 days. The addition of calcium hydroxide and increased aeration have been shown to increase NH3 volatilization. The recovered NH3 up to 3 kg-N can be used as a source of clean nitrogen for high-value microalgae cultivation, with a theoretical yield of up to 34.85 kg-algae of microalgae biomass from 1 ton-ds of SAS composting. Despite the high salinity, SAS compost improved mango plant growth and disease resistance. These results highlight the potential of SAS compost as a sustainable source of clean nitrogen for microalgae cultivation and soil conditioner, contributing to a waste-free circular economy through nutrient recycling and sustainable agriculture.


Composting , Mangifera , Sewage , Ammonia/analysis , Soil , Aquaculture , Nutrients , Nitrogen/analysis
18.
Physiol Plant ; 176(2): e14242, 2024.
Article En | MEDLINE | ID: mdl-38439528

The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.


Arabidopsis , Mangifera , Mangifera/genetics , Arabidopsis/genetics , Circadian Rhythm , Droughts , Flowers/genetics , Saccharomyces cerevisiae
19.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38473886

Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6-72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes.


Mangifera , Methyltransferases , Mangifera/genetics , Plant Proteins/genetics , Salt Tolerance/genetics , Phylogeny , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Droughts , Plants, Genetically Modified/genetics
20.
Int J Biol Macromol ; 264(Pt 2): 130773, 2024 Apr.
Article En | MEDLINE | ID: mdl-38467211

This work reports on the development of starch-rich thermoplastic based formulations produced by using mango kernel flour, avoiding the extraction process of starch from mango kernel to produce these materials. Glycerol, sorbitol and urea at 15 wt% are used as plasticizers to obtain thermoplastic starch (TPS) formulations by extrusion and injection-moulding processes. Mechanical results show that sorbitol and urea allowed to obtain samples with tensile strength and elongation at break higher than the glycerol-plasticized sample, achieving values of 2.9 MPa of tensile strength and 42 % of elongation at break at 53 % RH. These results are supported by field emission scanning electron microscopy (FESEM) micrographs, where a limited concentration of voids was observed in the samples with sorbitol and urea, indicating a better interaction between starch and the plasticizers. Thermogravimetric analysis (TGA) shows that urea and sorbitol increase the thermal stability of TPS in comparison to the glycerol-plasticized sample. Differential scanning calorimetry (DSC) and dynamic-mechanical-thermal analysis (DMTA) verify the increase in stiffness of the sorbitol and urea plasticized TPS and also illustrate an increase in the glass transition temperature of both samples in comparison to the glycerol-plasticized sample. Glass transition temperatures of 45 °C were achieved for the sample with sorbitol.


Mangifera , Plasticizers , Plasticizers/chemistry , Starch/chemistry , Glycerol/chemistry , Flour , Plastics , Sorbitol/chemistry , Urea/chemistry
...